The Maternal Effect Gene *Wds* Controls *Wolbachia* Titer in *Nasonia*

Highlights
- *Wolbachia* density variation between *Nasonia* species is established in oogenesis
- *N. vitripennis* suppresses *Wolbachia* densities by 100-fold through a maternal genetic effect
- Positional cloning identifies the *Wolbachia density suppressor* gene on chromosome 3
- *Wds* experiences positive selection and elevated rates of non-synonymous change

Authors
Lisa J. Funkhouser-Jones, Edward J. van Opstal, Ananya Sharma, Seth R. Bordenstein

Correspondence
lisa.j.funkhouser@gmail.com (L.J.F.-J.), evanopstal87@gmail.com (E.J.v.O.), s.bordenstein@vanderbilt.edu (S.R.B.)

In Brief
Funkhouser-Jones et al. use several forward genetic techniques to map two quantitative trait loci in the *N. vitripennis* genome, and they identify the taxon-restricted gene *Wds*, which strongly suppresses maternal transmission of *Wolbachia* to developing oocytes through a maternal genetic effect. The *N. vitripennis Wds* sequence evolved by positive Darwinian selection.
The Maternal Effect Gene Wds Controls Wolbachia Titer in Nasonia

Lisa J. Funkhouser-Jones,1,2,6,* Edward J. van Opstal,1,6,* Ananya Sharma,1 and Seth R. Bordenstein1,3,4,5,7,*

1Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
2Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
3Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA
4Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN 37235, USA
5Vanderbilt Genetics Institute, Nashville, TN 37235, USA
6These authors contributed equally
7Lead Contact
*Correspondence: lisa.j.funkhouser@gmail.com (L.J.F.-J.), evanopstal87@gmail.com (E.J.v.O.), s.bordenstein@vanderbilt.edu (S.R.B.)
https://doi.org/10.1016/j.cub.2018.04.010

SUMMARY

Maternal transmission of intracellular microbes is pivotal in establishing long-term, intimate symbioses. For germline microbes that exert negative reproductive effects on their hosts, selection can theoretically favor the spread of host variants that counteract the microbe’s harmful effects. Here, we leverage a major difference in bacterial (Wolbachia pipientis) titers between closely related wasp species with forward genetic, transcriptomic, and cytological approaches to map two quantitative trait loci that suppress bacterial titers via a maternal effect. Fine mapping and knockdown experiments identify the gene Wolbachia density suppressor (Wds), which dominantly suppresses bacterial transmission from mother to embryo. Wds evolved by lineage-specific non-synonymous changes driven by positive selection. Collectively, our findings demonstrate that a genetically simple change arose by positive Darwinian selection in less than a million years to regulate maternally transmitted bacteria via a dominant, maternal effect gene.

INTRODUCTION

Many animals harbor microorganisms that participate in beneficial processes as diverse as nutritional uptake and metabolism [1, 2], immune cell development [3, 4], and pathogen resistance [5, 6]. However, even innocuous microbes can become harmful when not properly regulated [7, 8]. Moreover, intracellular symbionts that are maternally transmitted over multiple host generations can impose long-term, negative fitness effects on their hosts [9, 10]. In these intimate and enduring symbioses, hosts are predicted to evolve suppression that reduces the harmful effects of the symbiont [11, 12]. However, little is known about the genes and evolutionary forces that underpin the regulation of maternally transmitted symbionts, despite the repeated and independent origins of maternal transmission in diverse host taxa [13]. Reverse genetic studies in insects suggest immune or developmental genes may evolve to affect endosymbiont densities [14–16]; but, to the best of our knowledge, no studies have utilized forward genetic approaches to identify the gene(s) underlying variation in host regulation of maternally transmitted symbionts.

Here we utilize a major host interspecific difference in titers of the maternally transmitted bacteria Wolbachia and quantitative trait loci analyses to identify a maternal effect, suppressor gene in the Nasonia model. Nasonia (order Hymenoptera) is a genus of parasitoid wasps comprised of four closely related species, with N. vitripennis last sharing a common ancestor with the other three species approximately one million years ago [17, 18]. In the lab, interspecific crosses of Nasonia species with the same or no Wolbachia produce viable and fertile hybrid females, which permits the transfer of genetic or cytoplasmic material (including intracellular Wolbachia) between Nasonia species. Consequently, Nasonia is a powerful model for studying the quantitative genetics of interspecific variation in host traits, such as wing size [19, 20], head shape [21], and sex pheromones [22].

Wolbachia (order Rickettsiales) live intracellularly in 40%–52% of all arthropod species [23, 24], and they are predominantly transmitted transovarially with occasional transfer between host species on an evolutionary timescale [25, 26]. In most insects, including in Nasonia, Wolbachia function as reproductive parasites that manipulate host reproduction through a variety of mechanisms to achieve a greater proportion of infected females in the host population [27, 28]. Both efficient maternal transmission and host reproductive manipulation often depend on sufficiently high within-host Wolbachia densities [29, 30]; however, overproliferation of Wolbachia can drastically reduce lifespan in Drosophila [10], mosquitoes [31, 32], and terrestrial isopods [33]. Thus, co-adaptation between arthropod hosts and Wolbachia strain(s) can promote genetic and phenotypic changes that impact transmission of Wolbachia densities [34–37]. When co-adapted host and Wolbachia pairs are disrupted through experimental transfer of Wolbachia into a naive host, control of the symbiosis is often lost, leading to overproliferation and expanded tissue tropism of Wolbachia, changes in bacterio- phage activity, and/or fitness costs not observed in the original host species [33, 37, 38].

Each Nasonia species is naturally infected with different Wolbachia strains that were primarily acquired through horizontal transfer; in rare cases, the Wolbachia have since co-diverged with their
host wasp species [39]. Intergression of a specific *Wolbachia* strain (wVitA) from one *Nasonia* species (*N. vitripennis*) to a naive, closely related species (*N. giraulti*) results in a major perturbation of the symbiosis in which the relative *Wolbachia* densities increase by two orders of magnitude, and there is an associated reduction in fecundity in *N. giraulti* [37]. Importantly, wVitA densities and *Nasonia* fecundity return to normal when wVitA is crossed back into an *N. vitripennis* genomic background from the high-density *N. giraulti* line (IntG). Since both the native *N. vitripennis* and the wVitA-infected *N. giraulti* IntG lines have the same cytotype, the interspecific *Wolbachia* density variation is established by variation in the host nuclear genomes [37]. In this study, we utilize several forward genetic techniques in *Nasonia* to dissect the genetic, evolutionary, and cytological basis of maternal regulation of *Wolbachia*. The varied approaches culminate in the characterization of two quantitative trait loci and the discovery of *Wolbachia* density suppressor (Wds), a positively selected, maternal effect gene that suppresses the transmission of *Wolbachia*.

RESULTS

N. vitripennis Dominantly Suppresses wVitA Titer through a Maternal Genetic Effect

to determine the inheritance pattern of wVitA densities, we reciprocally crossed *N. vitripennis* (low-density) and *N. giraulti* IntG (high-density) individuals, and we measured the *Wolbachia* densities of F1 female hybrids using qPCR for a single-copy *Wolbachia* gene (*groEL*) normalized to a *Nasonia* gene (*NvS6K*) (Figure 1A). The average F1 female pupal *Wolbachia* densities from pure-breeding *N. vitripennis* (n = 5) and *N. giraulti* control families (n = 5) were 0.057 ± 0.004 and 4.805 ± 1.071 (mean ± SEM), respectively, which represents an 84-fold interspecific difference in *Wolbachia* titer and is consistent with previous studies [37]. Interestingly, while F1 hybrid females from both crosses had identical genotypes (i.e., heterozygous at all loci) and the same cytotype (*N. vitripennis*), the average *Wolbachia* densities in reciprocal F1 hybrid females were significantly different at 0.149 ± 0.029 versus 1.746 ± 0.187 (Figure 1A; n = 10 for both crosses; Kruskal-Wallis test: H = 24.99, df = 3, p < 0.0001; Dunn’s multiple comparisons test: p = 0.03).

To test whether the difference in F1 *Wolbachia* densities was due to maternal *Wolbachia* load or to a maternal genetic effect, we backcrossed F1 females to their paternal line and pooled five female F2 pupae per F1 mother for qPCR (Figure 1B). If a maternal genetic effect regulates *Wolbachia* densities, F2 pupae from both experimental lines should have similar *Wolbachia* levels since F1 hybrid mothers are genotypically identical. Indeed, the densities of F2 pupal offspring of both low- and high-density F1 mothers were not significantly different (Figure 1B; 0.086 ± 0.007, n = 14, and 0.161 ± 0.024, n = 13, respectively; Dunn’s multiple comparisons test: p = 0.18), supporting the inference that maternal nuclear genotype plays an important role in regulating *Wolbachia* densities. Furthermore, since the densities of both F2 hybrid groups were more similar to the *N. vitripennis* control (0.053 ± 0.001, n = 6) than to the *N. giraulti* control (3.364 ± 0.174, n = 6), the *N. vitripennis* suppression gene(s) producing the low *Wolbachia* density phenotype is dominant (Figure 1B).

Disparities in Embryonic wVitA Levels between *N. vitripennis* and *N. giraulti* Are Established during Oogenesis

We previously showed variation in wVitA loads between *N. vitripennis* and *N. giraulti* in early embryos, with strict posterior localization of wVitA in *N. vitripennis* that is perturbed in *N. giraulti* [37]. Since the wVitA density disparity is partially controlled through a maternal genetic effect (Figure 1B), we...
simultaneously to help discriminate between *N. vitripennis* (Figure 3A). Two independent selection lines were generated offspring used as mothers in the next round of introgression with a genetic effect, hybrid females were selected based on the ure 3A). Since the phenotype is controlled through a maternal backcrossing hybrid females to *N. giraulti* upon the low-density phenotype of this species while serially

In an initial approach to determine the location and number of

To validate the *Wolbachia* density-suppressing chromosomal re-
gions determined through phenotypic selection and a genotyping microarray, we performed an independent quantitative trait locus (QTL) analysis in which F1 hybrid females were backcrossed to high-density *N. giraulti* IntG males to obtain 191 F2 recombinant females. Each F2 female was phenotyped by measuring the *Wolbachia* densities of her F3 pupal offspring. Since the most informative individuals in QTL mapping are those with the most extreme phenotypes [41], we selectively genotyped F2 females with the lowest (0.072–0.409, n = 42) and highest (2.958–10.674, versus those possibly maintained through chance (present in only one line).

For each independent line, DNA from three females that produced ninth-generation offspring with the lowest *Wolbachia* densities were pooled and genotyped on a *Nasonia* genotyping microarray composed of 19,681 sequence markers that differ between *N. vitripennis* and *N. giraulti* [40]. Both selection lines (L1 and L2) displayed an enrichment of *N. vitripennis* alleles along the central portions of chromosomes 2 and 3 of *Nasonia*’s five chromosomes (Figure 3B). On the most recent *N. vitripennis* linkage map [40], the area of enrichment on chromosome 2 for L1 occurs between 38 and 51.1 cM, while enrichment in L2 extends from 25.6 to 38 cM (Figure 3B). Although overlap in *N. vitripennis* allele enrichment between L1 and L2 on chromosome 2 occurs at 38 cM, the exact position and size of the overlap cannot be determined due to the fact that it falls within the poorly assem-

Phenotype-Based Selection and Introgression Identify Two Maternal Suppressor Genomic Regions

In an initial approach to determine the location and number of loci that suppress wVitA densities in *N. vitripennis*, we selected upon the low-density phenotype of this species while serially backcrossing hybrid females to *N. giraulti* IntG males (Figure 3A). Since the phenotype is controlled through a maternal genetic effect, hybrid females were selected based on the wVitA densities of their offspring, with sisters of the low-density offspring used as mothers in the next round of introgression (Figure 3A). Two independent selection lines were generated simultaneously to help discriminate between *N. vitripennis* regions maintained due to selection (present in both lines) and versus those possibly maintained through chance (present in only one line).

For each independent line, DNA from three females that produced ninth-generation offspring with the lowest *Wolbachia* densities were pooled and genotyped on a *Nasonia* genotyping microarray composed of 19,681 sequence markers that differ between *N. vitripennis* and *N. giraulti* [40]. Both selection lines (L1 and L2) displayed an enrichment of *N. vitripennis* alleles along the central portions of chromosomes 2 and 3 of *Nasonia*’s five chromosomes (Figure 3B). On the most recent *N. vitripennis* linkage map [40], the area of enrichment on chromosome 2 for L1 occurs between 38 and 51.1 cM, while enrichment in L2 extends from 25.6 to 38 cM (Figure 3B). Although overlap in *N. vitripennis* allele enrichment between L1 and L2 on chromosome 2 occurs at 38 cM, the exact position and size of the overlap cannot be determined due to the fact that it falls within the poorly assem-

Current Biology 28, 1–11, June 4, 2018

Figure 2. Disparities in wVitA Titers Begin during Oogenesis

(A) Diagram of a *Nasonia* egg chamber. Large green circles represent nurse cell nuclei and small black circles represent Wolbachia (black arrow labeled with “W”).

(B) Stage 3 egg chambers with host and Wolbachia DNA stained with SYTOX Green from wVitA-infected *N. vitripennis* 12.1. A, anterior; P, posterior; scale bar, 15 μm. Examples of Wolbachia bacteria are labeled with a “W” and white arrows.

(C) An embryo with Wolbachia stained with HSP60 from wVitA-infected *N. vitripennis* 12.1. Scale bar, 50 μm.

(D) Stage 3 egg chambers with host and Wolbachia DNA stained with SYTOX Green from uninfected *N. vitripennis* 12.1 T. Scale bar, 50 μm.

(E) Stage 3 egg chambers with host and Wolbachia DNA stained with SYTOX Green from wVitA-infected *N. giraulti* IntG. Scale bar, 15 μm.

(F) An embryo with Wolbachia stained with HSP60 from wVitA-infected *N. giraulti* IntG. Scale bar, 50 μm. All embryo and ovary images are representa-
tive of two and three independent experiments, respectively. See also Figure S1.
n = 42) F3 pupal Wolbachia titers with a total of 47 microsatellite markers across chromosomes 1, 2, and 3 and an average distance between markers of 3 cM (Table S1). Using genotype data for selected individuals and phenotype data for all F2 females (Data S1), we identified two significant QTL regions at a genome-wide significance level of \(\alpha = 0.05 \) (LOD > 2.29): one...
QTL peak on chromosome 2 at 43 cM (p < 0.001) and the other on chromosome 3 at 41.5 cM (p < 0.001; Figure 3C). Strikingly, the 95% Bayes credible interval on chromosome 2 corresponds to the same region identified by the genotyping microarray as enriched for *N. vitripennis* alleles in introgression line 1 (38–51.1 cM), while the 95% Bayes credible interval on chromosome 3 also contains a region that was enriched for *N. vitripennis* alleles (35–47.5 cM) in both introgression lines. Thus, the microarray and QTL analyses complement each other and confirm that suppressor genes of major effect for *wVitA* density are located near the centromeric regions on chromosomes 2 and 3.

As a negative control, we genotyped the same individuals with markers located on *Nasonia* chromosome 1 (Data S1), which was not enriched for *N. vitripennis* alleles after the selection introgression. In the QTL analysis, the highest peak on chromosome 1 was not statistically significant (Figure 3C), indicating again that chromosomes 2 and 3 are likely the only chromosomes harboring genes of major effect for the *wVitA* density trait.

To determine the effect of each QTL on density suppression, the average percent reduction in F3 pupal *Wolbachia* densities was calculated for the F2 females with *N. vitripennis* alleles at markers close to one or both of the calculated QTL peaks. Females with *N. vitripennis* chromosome 2 or chromosome 3 QTLs produced offspring with a 52% or 32% reduction in densities, respectively, compared to offspring of females that were homozygous *N. giraulti* at both QTLs (Figure 3C, inset). Furthermore, these effects acted additively for a 91% reduction in densities in offspring of females with *N. vitripennis* alleles at both loci compared to offspring of F2 females with *N. giraulti* alleles at both loci (Figure 3C, inset).

Marker-Assisted Introgression Confirms and Narrows the Maternal Effect Suppressor QTL on Chromosome 3

To validate the QTLs on chromosomes 2 and 3 and narrow the gene candidate regions, we independently introgressed the QTL regions from *N. vitripennis* into an *N. giraulti* IntG background for at least nine generations using marker-assisted selection (similar to Figure 3A, see the STAR Methods). After the ninth generation, we conducted sibling matings to produce segmental introgression lines that were homozygous *N. vitripennis* for the marker of interest. Unfortunately, generating *N. vitripennis* homozygous lines for the chromosome 2 region was not possible due to hybrid sterility, so we focused exclusively on the chromosome 3 region.

The initial homozygous and heterozygous introgression lines generated from sibling matings identified a candidate region 3.4 Mb in size containing 288 genes (line IntC3) that suppressed *wVitA* densities by 60%, while lines lacking this region had little to no density suppression (Figure 4; Data S2). Surprisingly, the percent effect of the chromosome 3 homozygous introgression on *Wolbachia* suppression was nearly double that observed in the QTL study (60% versus 32%; Figure 3C, inset). However, the QTL study was performed on F2 hybrid females while the introgression lines underwent at least nine generations of backcrossing. If there is an *N. vitripennis*-specific negative regulator of the *Wolbachia* suppressor gene on a different chromosome, then the allele would likely be present in F2 hybrids but would have recombined out with subsequent backcrossing to *N. giraulti* IntG. The stronger phenotype could also be due to the homozygous introgression lines having two copies of the *N. vitripennis* chromosome 3 candidate region, while F2 hybrid females were heterozygous. However, this is unlikely since heterozygous introgression females had the same level of *Wolbachia* suppression as their homozygous counterparts (Figure 4; C3-3 and C3-4 versus C3-5 and C3-6; Kruskal-Wallis test: H = 1.39, df = 3, p = 0.71).

Line IntC3 was further backcrossed to *N. giraulti* IntG to generate four recombinant lines (R3, R4, R5, and R6) that suppressed *wVitA* densities by 58%–78% (depending on the line) with an overlapping candidate region of 780 kb and 44 genes (Figure 4). Finally, line R6 was backcrossed to *N. giraulti* IntG to obtain three recombinant lines, two of which caused 67% (R6-2) and 68% (R6-3) density suppression. The overlapping *N. vitripennis* region in lines R6-2 and R6-3 was 165 kb and contained only 32 genes (Figure 4).

RNA-Seq Identifies a Single Candidate Gene (*Wds*) Based on Expression Differences in *Nasonia* Ovaries

To identify candidate genes within the 165 kb, 32-gene region that were differentially expressed in the maternal germline of *N. vitripennis* and *N. giraulti*, we performed high-throughput RNA sequencing (RNA-seq) on four independent pools of 40 ovary samples from the parental *N. vitripennis* line 12.1, the introgression line IntC3, and five independent pools from the parental *N. giraulti* line IntG (Table S2). Seven genes in the 32-gene candidate region exhibited significant differences in expression among the three aforementioned lines (Table S3). However, since the density trait is controlled by a dominant *N. vitripennis* maternal effect allele (Figure 1B), we reasoned that the most likely candidate gene(s) would be upregulated in *N. vitripennis* compared to *N. giraulti*.

Analysis of the RNA-seq data indicated that only one of the seven genes (LOC100679092) was consistently and significantly overexpressed in *N. vitripennis* and IntC3 (low-density) ovaries compared to *N. giraulti* IntG (high-density) ovaries, which was confirmed in independent biological replicates by qRT-PCR (79-fold and 92-fold higher expression in *N. vitripennis* and IntC3 than *N. giraulti* IntG, respectively; Figure S2). The RNA-seq data also validated the same predicted gene splicing model for LOC100679092 for both *N. vitripennis* and *N. giraulti*, indicating that the expression differences are not due to species-specific alternative splicing of the gene. As an uncharacterized gene with no known protein domains, we hereby name the gene *Wds* for *Wolbachia density suppressor* gene.

Wds Controls Embryonic wVitA Densities via a Maternal Effect

Parental RNAi has successfully been used in *Nasonia* to examine the effects of maternal genes on embryonic development [42, 43]. If the *N. vitripennis* allele of *Wds* (*Wds*) was responsible for suppressing *Wolbachia* titers, we expected that knockdown of *Wds*, transcripts in IntC3 mothers would result in reduced density suppression and, consequently, an increase in *wVitA* levels in the resulting embryos. Indeed, injection of IntC3 mothers with double-stranded RNA (dsRNA) against *Wds*, significantly increased offspring embryonic *wVitA* densities (696 ± 67.9, n = 24) by 56% or 63% compared to embryonic...
Figure 4. Segmental Introgression Lines Narrow the Chromosome 3 Candidate Region to 32 Genes

The star and colored region on the chromosome map represent the QTL peak and 95% Bayes credible interval, respectively. The thin vertical black lines in the chromosome map denote the locations of *Nasonia* molecular markers used for genotyping, while the thick black line represents the centromere. Diploid recombinant genotypes are depicted as haplotypes, where green bars represent *N. vitripennis* homozygous regions, dashed bars are heterozygous regions, solid cream bars are *N. giraulti* IntG homozygous regions, and black bars are recombination breakpoints between two markers. Line graphs represent chromosome length in megabases and are drawn to scale except for centromeric regions (broken dashes at top of the figure). Names of the molecular markers (MMs) used for genotyping are provided above the line graphs, and their locations (in cM) based on the genetic map from [40] are located below the line graphs. The bar graphs show the mean percent effect on density suppression in pupal offspring from all individual mothers with the same haplotype. Gray shading indicates density suppressor candidate regions based on presence of *N. vitripennis* genes correlated with high percent effect on density suppression. Error bars denote mean ± SEM.

See also Tables S1 and S3 and Data S2.
wVitA densities from mothers injected with dsRNA against a control bacterial gene, maltose transporter subunit E (maIE) (447 ± 52.1, n = 24) or buffer-injected females (426 ± 50.3, n = 23), respectively (Figure 5A; Kruskal-Wallis test: $H = 13.1$, df = 3, $p = 0.006$ and $p = 0.027$ compared to Wds$_{p}$ group). This increase coincided with a 57% knockdown in Wds$_{p}$ gene expression in RNAi females compared to the buffer-injected controls (Figure 5B; Mann-Whitney U test, $p = 0.0041$). Furthermore, we compared embryonic wVitA densities from mothers injected with dsRNA against Nasonia gene LOC100679394 (Mucin-SAC), a gene that was significantly upregulated in N. vitripennis but immediately outside the chromosome 3 candidate region. Embryos from mothers injected with dsRNA against Mucin-SAC did not produce significantly higher wVitA densities (459 ± 75.9, n = 25) compared to embryos from either maIE-RNAi (447 ± 52.1, n = 24) or buffer-injected females (426 ± 50.3, n = 25; Figure 5A), even though Mucin-SAC-RNAI mothers had a 71% decrease in Mucin-SAC gene expression versus buffer-injected controls (Figure S3; Mann-Whitney U test, $p = 0.0003$).

To further validate the effect of Wds$_{p}$ on Wolbachia densities, females from recombinant line R6-3 (homozygous N. vitripennis for the 32-gene candidate region only) were injected with dsRNA against Wds$_{p}$. Knockdown of Wds$_{p}$ in R6-3 females again significantly increased embryonic wVitA densities (314 ± 34.4, n = 21) by 43% or 54% compared to embryonic wVitA densities from mothers injected with dsRNA against the control bacterial gene maIE (219 ± 39.2, n = 19) or from buffer-injected females (204 ± 28.4, n = 20), respectively to the buffer-injected controls (Figure 5D; Mann-Whitney U test, $p = 0.0041$).

Accelerated Evolution and Positive Selection Impact Wds in N. vitripennis

The Nasonia genus is comprised of four closely related species, with N. vitripennis sharing a common ancestor with the other three species approximately one million years ago [17, 18]. Wds protein sequences are 95% identical between N. vitripennis and N. giraulti with ten amino acid differences (and no insertions or deletions [indels]) of 201 total amino acids (Figure 6A). Between the more closely related N. giraulti and N. longicornis species that diverged approximately 400,000 years ago [17], Wds is 99% identical with two amino acid differences that evolved specifically in N. giraulti (Figure 6A). Interestingly, Wds in Trichomalopsis sarcophagae, the wasp species most closely related to Nasonia [44], shares 95% amino acid identity to the N. vitripennis protein, but 97% and 98% identity to the N. giraulti and N. longicornis proteins, respectively (Figure 6A). Taken together, there are seven unique amino acid changes in N. vitripennis that led to accelerated protein sequence evolution in Wds, (Figures 6A and 6B). Furthermore, three of those seven amino acid changes fall within a region of high positive selection based on a sliding window analysis of the Ka/Ks ratio (Figure 6C) [45]. Additionally, these changes are associated with a shift in the isoelectric point (pI) of the Wds protein, an important factor in protein evolution [46]. The pI drops from 9.24 in N. vitripennis to 8.75 in N. giraulti. In contrast, the pI difference for the Mucin-SAC control is minimal (ΔpI = 0.04).

Figure 5. The N. vitripennis Allele of Wds Suppresses Densities of Vertically Transmitted Wolbachia

(A) Number of wVitA Wolbachia per embryo from IntC3 females that were buffer injected, injected with dsRNA against control genes MaIE or Mucin-SAC, or injected with dsRNA against Wds$_{p}$. *p < 0.05 and **p < 0.01, post hoc Dunn’s multiple comparisons test.

(B) Relative gene expression of Wds, in late pupae of Wds-RNAI and Mucin-SAC-RNAI females normalized to Wds$_{p}$ expression in buffer-injected females. *p < 0.01, Mann-Whitney U test.

(C) Number of wVitA Wolbachia per embryo from R6-3 females that were buffer injected, injected with dsRNA against control gene MaIE, or injected with dsRNA against Wds$_{p}$. *p < 0.05, Mann-Whitney U test.

(D) Relative gene expression of Wds, in late pupae of Wds-RNAI and MaIE-RNAI females normalized to Wds$_{p}$ expression in buffer-injected females. **p < 0.01 and ***p < 0.001, Mann-Whitney U test.

* All error bars represent mean ± SEM.

See also Figures S2 and S3 and Tables S2, S3, and S6.
Overall, Wds in the *N. vitripennis* lineage experienced recent amino acid substitutions, possibly in response to acquisition of the *wVitA* Wolbachia strain that horizontally transferred into *N. vitripennis* after *N. vitripennis*’s divergence from its common ancestor with *N. giraulti* and *N. longicornis* [39]. Outside of these four species, the next closest Wds orthologs are found in wasps such as *Trichogramma pretiosum*, *Copidosoma floridanum*, and *Polistes canadensis*, but they only share 29%–42% amino acid identity to Wdsv across a majority of the sequence (Table S4). While more distant orthologs are present in other Hymenopterans such as bees and ants (Table S4), only portions of the proteins can be properly aligned. Therefore, our findings demonstrate a rapidly evolving, taxon-restricted gene can contribute directly to the adaptive evolution of regulating maternal symbiont transmission.

DISCUSSION

The main goal of this study was to determine the number and types of gene(s) that control the most widespread, maternally transmitted symbiont density in animals [23, 24]. Unlike reverse genetic screens that mutate genes and then look for phenotypes, which may produce off-target effects unrelated to the true function of the protein, this forward genetic screen utilized an unbiased, candidate-blind approach to dissect the genetic basis of variation in host suppression of maternally transmitted Wolbachia. We found that suppression of *wVitA* in *N. vitripennis* can be mapped to two regions of the *Nasonia* genome that regulate nearly all of the Wolbachia density suppression. The identification of the Wds gene demonstrates that host regulation of maternally transmitted symbiont density is adaptive and can proceed through lineage-specific amino acid changes in a maternal effect gene. The *N. vitripennis*-specific substitutions in Wds were possibly driven by *N. vitripennis*’s acquisition of *wVitA* after its divergence with *N. giraulti* [39]. Indeed, another *N. vitripennis*-specific Wolbachia strain, *wVitB*, maintains its low levels after transfer to *N. giraulti* [37], indicating that Wdsv may encode a specific regulator of *wVitA*. Furthermore, *N. giraulti* maintains its native *wGirA* Wolbachia strain at comparable levels to *wVitA* in *N. vitripennis* [37], but whether Wdsg is involved in regulating *wGirA* remains to be tested.

The Wds protein has areas of low complexity and a predicted signal peptide at its N terminus (Figure 6C), but otherwise it does not contain any characterized protein domains that allude to its function. The main goal of this study was to determine the number and types of gene(s) that control the most widespread, maternally transmitted symbiont density in animals [23, 24]. Unlike reverse genetic screens that mutate genes and then look for phenotypes, which may produce off-target effects unrelated to the true function of the protein, this forward genetic screen utilized an unbiased, candidate-blind approach to dissect the genetic basis of variation in host suppression of maternally transmitted Wolbachia. We found that suppression of *wVitA* in *N. vitripennis* can be mapped to two regions of the *Nasonia* genome that regulate nearly all of the Wolbachia density suppression. The identification of the Wds gene demonstrates that host regulation of maternally transmitted symbiont density is adaptive and can proceed through lineage-specific amino acid changes in a maternal effect gene. The *N. vitripennis*-specific substitutions in Wds were possibly driven by *N. vitripennis*’s acquisition of *wVitA* after its divergence with *N. giraulti* [39]. Indeed, another *N. vitripennis*-specific Wolbachia strain, *wVitB*, maintains its low levels after transfer to *N. giraulti* [37], indicating that Wdsv may encode a specific regulator of *wVitA*. Furthermore, *N. giraulti* maintains its native *wGirA* Wolbachia strain at comparable levels to *wVitA* in *N. vitripennis* [37], but whether Wdsg is involved in regulating *wGirA* remains to be tested.

The Wds protein has areas of low complexity and a predicted signal peptide at its N terminus (Figure 6C), but otherwise it does not contain any characterized protein domains that allude to its function.
function. Staining of wVitA in Nasonia ovaries revealed a trend of higher Wolbachia titers in the nurse cells of N. vitripennis than N. giraulti (Figures S1B and S1C) concurrent with significantly lower Wolbachia levels in N. vitripennis oocytes than in N. giraulti oocytes (Figure S1A). Thus, Wds, may operate by hindering wVitA trafficking between nurse cells and the developing oocyte in N. vitripennis, perhaps by preventing wVitA binding to microtubule motor proteins responsible for Wolbachia transport into the oocyte [47, 48]. Furthermore, in Drosophila, Wolbachia wMel bacteria in the oocyte increase proportionally faster than those in the nurse cells [47]. If the same is true for Nasonia, then high wVitA densities in N. giraulti could be a result of increased wVitA trafficking to the oocyte (due to a lack of repression by Wds) compounded with faster proliferation once in the oocyte.

Alternatively, Wds, could suppress Wolbachia replication by upregulating a host immune response or by downregulating host pathways that Wolbachia rely upon for growth. For example, inhibiting host proteasome activity in Drosophila significantly reduces Wolbachia oocyte titers [49], presumably due to a reduction in the availability of amino acids, a key nutrient that Wolbachia scavenges from its host [50]. However, if Wds, regulates a general host pathway that impacts Wolbachia replication (such as host proteolysis), then we would expect both wVitA and wVitB titers to increase when transferred to N. giraulti. Instead, the strain specificity of Wds, suggests a more direct interaction with Wolbachia, such as a competitive inhibitor of motor protein binding and nurse cell-to-oocyte trafficking, as discussed above.

The findings presented here indicate that keeping maternally transmitted symbionts in check can have a simple genetic basis, even for obligate intracellular bacteria that must be regulated within host cells and tissues. Moreover, a single maternal effect gene with a major consequence on the density phenotype demonstrates how natural selection can rapidly shape the evolution of density suppression of maternally transmitted symbionts in invertebrates. Future studies are warranted to tease apart the specific host-Wolbachia interactions driving Wolbachia regulation in Nasonia and to determine whether these interactions are paralleled in other insect-Wolbachia symbioses.
Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547.

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse monoclonal Anti-human Hsp60</td>
<td>Sigma</td>
<td>Cat#H3524</td>
</tr>
<tr>
<td>Goat anti-mouse IgG Alexa Fluor 594</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#A-11005</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GelRed</td>
<td>Biotium</td>
<td>Cat#41003-1</td>
</tr>
<tr>
<td>SYTOX Green Nucleic Acid Stain</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#S7020</td>
</tr>
<tr>
<td>ProLong Gold Antifade Mountant</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#P36930</td>
</tr>
<tr>
<td>ProLong Diamond Antifade Mountant</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#P36970</td>
</tr>
<tr>
<td>Critical Commercial Assays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentra Puregene Tissue Kit</td>
<td>QIAGEN</td>
<td>Cat#158667</td>
</tr>
<tr>
<td>DNeasy Blood and Tissue Kit</td>
<td>QIAGEN</td>
<td>Cat#69504</td>
</tr>
<tr>
<td>Direct-zol RNA Miniprep kit</td>
<td>Zymo Research</td>
<td>Cat#R2050</td>
</tr>
<tr>
<td>Nucleospin RNA/Protein Kit</td>
<td>Macherey-Nagel</td>
<td>Cat#740933.50</td>
</tr>
<tr>
<td>iQ SYBR Green Supermix</td>
<td>Bio-Rad</td>
<td>Cat#1708882</td>
</tr>
<tr>
<td>iTaq Universal SYBR Green Supermix</td>
<td>Bio-Rad</td>
<td>Cat#1725122</td>
</tr>
<tr>
<td>GoTaq Green Master Mix</td>
<td>Promega</td>
<td>Cat#M7123</td>
</tr>
<tr>
<td>REPLi-g Mini Kit</td>
<td>QIAGEN</td>
<td>Cat#150023</td>
</tr>
<tr>
<td>QiAquick PCR Purification Kit</td>
<td>QIAGEN</td>
<td>Cat#28104</td>
</tr>
<tr>
<td>QiAquick Gel Extraction Kit</td>
<td>QIAGEN</td>
<td>Cat#28704</td>
</tr>
<tr>
<td>RO1 RNase-free DNase</td>
<td>Promega</td>
<td>Cat#M6101</td>
</tr>
<tr>
<td>DNA-free DNA Removal Kit</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#AM1906</td>
</tr>
<tr>
<td>Qubit RNA HS Assay Kit</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#Q32852</td>
</tr>
<tr>
<td>Qubit dsDNA Broad Range Assay Kit</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#Q32850</td>
</tr>
<tr>
<td>SuperScript VILO cDNA Synthesis Kit</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#11754050</td>
</tr>
<tr>
<td>MEGAscript RNAi kit</td>
<td>Thermo Fisher Scientific</td>
<td>Cat#AM1626</td>
</tr>
<tr>
<td>Deposited Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNA sequencing reads</td>
<td>This paper</td>
<td>SRA: PRJNA430433</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nasonia vitripennis 12.1</td>
<td>[29]</td>
<td>N/A</td>
</tr>
<tr>
<td>Nasonia giraulti IntG12.1</td>
<td>[37]</td>
<td>N/A</td>
</tr>
<tr>
<td>Wolbachia groEL (qPCR forward primer): CAACCTTTACTTCTATTTG</td>
<td>[51]</td>
<td>N/A</td>
</tr>
<tr>
<td>Wolbachia groEL (qPCR reverse primer): CAAACCTTTCTATTTGCACTCTT</td>
<td>[51]</td>
<td>N/A</td>
</tr>
<tr>
<td>Nasonia S6K (qPCR forward primer): GGCCATTATCTACAGAGATTGGAAACCAG</td>
<td>[52]</td>
<td>N/A</td>
</tr>
<tr>
<td>Nasonia S6K (qPCR reverse primer): CAAAGCTATATGACCTTCTGTATCAAG</td>
<td>[52]</td>
<td>N/A</td>
</tr>
<tr>
<td>Primers for Nasonia microsatellite markers, see Table S1</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Primers for Nasonia gene sequencing, see Table S5</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Primers for dsRNA construct and RT-qPCR, see Table S6</td>
<td>This paper</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Software and Algorithms		
Geneious Pro	Biomatters	http://www.geneious.com
R Software	R Project	https://www.r-project.org/

(Continued on next page)
Continued

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEGA7</td>
<td>[54]</td>
<td>http://www.megasoftware.net/</td>
</tr>
<tr>
<td>FIJI</td>
<td>[56]</td>
<td>https://fiji.sc/</td>
</tr>
<tr>
<td>GraphPad Prism</td>
<td>GraphPad Software</td>
<td>https://www.graphpad.com/scientific-software/prism/</td>
</tr>
</tbody>
</table>

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Seth R. Bordenstein (s.bordenstein@vanderbilt.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nasonia Parasitoid Wasps

Experiments were performed with Nasonia vitripennis strain 12.1, N. giraulti strain IntG12.1 or hybrids of these two species. N. vitripennis 12.1 is singly-infected with native Wolbachia strain wVitA and was derived from the double-infected N. vitripennis R511 (wVitA and wVitB) after a prolonged period of diapause [57]. N. giraulti strain IntG12.1 was generated by backcrossing N. vitripennis 12.1 females to uninfected N. giraulti Rv2x(u) males for nine generation [37], producing hybrids with an N. giraulti genome and an N. vitripennis cytoplasm harboring wVitA. All Nasonia were reared at 25°C in constant light on Sarcophaga bullata fly hosts reared in house on bovine liver from Walnut Hills Farm (Tennessee, USA).

METHOD DETAILS

Quantitative analysis of Wolbachia densities

Genomic DNA was extracted from pupae or adult Nasonia using the Gentra Puregene Tissue Kit (QIAGEN) according to the manufacturer’s protocol. Real-time quantitative PCR (qPCR) was performed on a CFX96 Real-Time system (Bio-Rad) using a total reaction volume of 25 μL: 12.5 μL of iQ SYBR Green Supermix (Bio-Rad), 8.5 μL of sterile water, 1.0 μL each of 5 μM forward and reverse primers, and 2 μL of target DNA in single wells of a 96-well plate (Bio-Rad). All qPCR reactions were performed in technical duplicates and included a melt curve analysis to check for primer dimers and nonspecific amplification. Selective amplification was performed using primers previously described for the Wolbachia groEL gene [51] and Nasonia NvS6K gene [52]. Standard curves for each gene were constructed as previously described [52] using a log10 dilution series of larger PCR products of known concentrations for each gene. groEL and S6K copy numbers for each sample were calculated based on the following standard curve equations:

\[y = \frac{-3.367x + 35.803}{S6K} \]

\[y = -3.455x + 35.908 \]

where y = averaged Ct value between technical duplicates and x = log starting quantity of template DNA. Wolbachia density was calculated by dividing groEL copy number by S6K copy number for each sample. Since diploid female Nasonia have twice the number of S6K copies than males, all experiments comparing Wolbachia densities were performed on either all male or all female samples to eliminate S6K copy number as a confounding factor in the statistical analyses.

Microsatellite marker genotyping

Primers used to amplify microsatellite markers that differ in size between N. vitripennis and N. giraulti are listed in Table S1. Microsatellite markers not previously published were identified by aligning N. vitripennis and N. giraulti genomic sequences using the Geneious alignment tool in Geneious Pro v5.5.8 (Biomatters). The Geneious primer design tool was then used to generate primer sets spanning each microsatellite. All PCR reactions were run on a Veriti Thermal Cycler (Applied Biosystems) with a total reaction volume of 15 μl: 7.5 μL of GoTaq Green Master Mix (Promega), 3.6 μL of sterile water, 1.2 μL of 5 μM forward and reverse primers (see Table S1 for annealing temp.), and 1.5 μL of target DNA. PCR products were run on 4% agarose gels in TBE buffer (Sigma) at 90 V for 2.5 to 6 hours, stained with GelRed (Biotium) according to manufacturer’s protocol, and imaged on a Red Personal Gel Imager (Alpha Innotech). New markers were validated based on predicted band size using N. vitripennis 12.1 and N. giraulti IntG as controls.

Phenotypic selection introgression and genotyping

N. vitripennis 12.1 females (low wVitA density) were backcrossed with N. giraulti IntG males (high wVitA density) for nine generations. For each generation of backcrossing, five female pupal offspring were pooled from each hybrid mother (N = 13 – 35 hybrid females...
depending on survival at each generation), and the pupal Wolbachia densities were measured using qPCR. Sisters of the pupae with the lowest Wolbachia densities were then used as mothers in the next round of backcrossing (N = 60 – 80 hybrid females). Two independent selection lines were maintained simultaneously along with control lines of pure-breeding N. vitripennis and N. giraulti. After eight generations of selection, the three females from each introgression line that produced ninth-generation offspring with the lowest Wolbachia densities were pooled and their DNA extracted using the DNeasy Blood and Tissue Kit (QIAGEN) with the protocol for purification of DNA from insects. To obtain enough DNA for microarray hybridization, we used the REPLI-g Mini Kit (QIAGEN) with the protocol for 5 μL of DNA template to amplify genomic DNA overnight at 30°C, then purified the DNA using ethanol precipitation. The final concentration for each sample was diluted to 1 μg/μL and a total of 10 μL was sent to The Center for Genomics and Bioinformatics at Indiana University to be processed on a Nasonia genotyping microarray (Roche NimbleGen) tiled with probes for 19,681 single nucleotide polymorphisms and indels that differ between N. vitripennis and N. giraulti [40].

For each sample, the proportion of N. vitripennis alleles at each marker was determined based on the ratio of hybridization to the N. vitripennis-specific probe versus hybridization to the N. giraulti-specific probe, as previously described [40]. To verify species-specificity of these markers for our Nasonia strains, we also genotyped N. vitripennis 12.1 and N. giraulti IntG control females on the array, and markers that did not display the correct specificity within one standard deviation of the median were removed from subsequent analyses (5,301 markers total). The remaining markers were then manually mapped back to the most recent Nasonia linkage map [40]. Since all introgression females received one copy of their diploid genome from their N. giraulti father, the theoretical maximum proportion of N. vitripennis alleles at each marker cluster for experimental samples is 0.5. The proportion of N. vitripennis alleles was averaged for every 22 consecutive markers across each chromosome, and heatmaps were generated using the HeatMap function in MATLAB (MathWorks). Areas were considered enriched for N. vitripennis alleles at ≥ 0.2.

QTL Analysis
F2 hybrid females (N = 191) were generated by backcrossing F1 N. vitripennis/N. giraulti hybrids to N. giraulti IntG males. F2 females were then backcrossed again to N. giraulti IntG and allowed to lay offspring. Five female pupae from each F2 female were pooled and their Wolbachia densities measured using qPCR. Females that produced offspring with densities within the highest and lowest quartile of the density distribution (N = 42 for each quartile) were selectively genotyped with 47 microsatellite markers spread across chromosomes 1, 2 and 3 with an average distance of 3 cM between markers (Table S1; Data S1). Phenotypic information for all 191 F2 females was included in the mapping analyses to prevent inflation of QTL effects due to the biased selection of extreme phenotypes [41]. QTL analyses were performed in R (version 3.0.2) with package R/qtl [53]. Significance thresholds for our dataset were calculated by using a stratified permutation test with the scanone function (1000 permutations). To identify significant QTL and their interactions, we first conducted a one-dimensional, one-QTL scan and a two-dimensional, two-QTL scan using the EM algorithm with a step size of 1 cM and an assumed genotype error probability of 0.001. Two significant QTLs were identified, one each on chromosomes 2 and 3, which were predicted to act additively. The positions of identified QTL were then refined using multiple QTL modeling with the multiple imputation algorithm (200 imputations, step size = 1 cM) assuming a model with two additive QTLs. 95% Bayes credible intervals were calculated for each QTL after multiple QTL modeling using the bayesiant function.

Marker-assisted segmental introgressions
Marker-assisted segmental introgression lines were generated by repeatedly backcrossing hybrid females to N. giraulti IntG males for nine generations while selecting for N. vitripennis alleles at three microsatellite markers on chromosome 3 (MM3.17, NvC3-18, and MM3.37). After the ninth generation, families that maintained an N. vitripennis allele at one or more of these markers were selected, and siblings were mated to each other to produce lines containing homozygous N. vitripennis regions at and around the markers. Individual adult females from each segmental line were genotyped and phenotyped separately (N = 10 – 15 females per line). Females were hosted as virgins, five male pupal offspring per female were pooled, and pupal Wolbachia densities were measured using qPCR. Variation across plates for a single experiment was reduced by including a set of parental DNA controls on all plates. The parental fold-change was then calculated by dividing the average N. giraulti control density by the average N. vitripennis control density. To calculate the sample fold-change, the absolute density for each sample was divided by the average density of the N. vitripennis control. To determine how “effective” each segmental introgression line was at reducing densities, we calculated the percent effect on density suppression for each sample using the following equation:

\[
\text{% effect on density suppression} = \left(1 - \frac{\text{sample fold change}}{\text{parental fold change}}\right) \times 100
\]

Each female was genotyped with markers across the region of interest, all females with identical genotypes across all markers were grouped together, and their percent effects on density suppression were averaged.

For the two subsequent rounds of introgression lines (R1 to R10 and R6-1 to R6-3), 300 IntC3 line virgin females or 800 R6 line virgin females, respectively, were backcrossed to IntG males. The resulting virgin F1 females produced haploid, recombinant F2 males. These recombinant males were mated to IntG females to produce heterozygous female offspring with the recombinant genotype. Siblings were then mated to each other and genotyped for two more generations to produce recombinant lines containing homozygous N. vitripennis introgressed regions reduced in size.
A subset of the genes within the 32-gene candidate region were genotyped using sequencing primers (Table S5) to amplify PCR products 250–750 bp for each of the R6 recombinant lines (R6-1 to R6-3) for Sanger sequencing (GENEWIZ). All PCR reactions were run on a Veriti Thermal Cycler (Applied Biosystems) with a total reaction volume of 15 μL: 7.5 μL of GoTaq Green Master Mix (Promega), 3.6 μL of sterile water, 1.2 μL of 5 μM forward and reverse primers (see Table S5 for annealing temp.), and 1.5 μL of target DNA and purified using the QIAquick PCR Purification kit (QIAGEN). At least 6 distinct single nucleotide polymorphisms (SNPs) between N. vitripennis and N. giraulti alleles were used to characterize the allele for each recombinant line using Geneious Pro v5.5.8 (Biomatters).

RNA-seq of ovaries

One-day old adult, virgin females from Nasonia strains N. vitripennis 12.1, N. giraulti IntG, and N. vitripennis/N. giraulti introgression line IntC3 were hosted as virgins on S. bullata pupae for 48 hours to stimulate feeding and oogenesis. Females were then dissected in RNase-free PBS, then flash-frozen in liquid nitrogen then stored at −80°C. Forty ovaries were pooled for each replicate and 4-5 biological replicates were collected per Nasonia strain. Ovaries were manually homogenized with RNase-free pestles, and their RNA was extracted using the Nucleospin RNA/Protein Kit (Macherey-Nagel) according to the manufacturer’s protocol for purification of total RNA from animal tissues. After RNA purification, samples were treated with RNase-free DNase (Promega) for 1 hour at 37°C, followed by an ethanol precipitation with 1/10th volume 3M sodium acetate and 3 volumes 100% ethanol incubated overnight at −20°C. PCR of samples with Nasonia primers NvS6KQT4 and NvS6KQT4R [52] revealed some residual DNA contamination, so DNase treatment and ethanol precipitation were repeated. After the second DNase treatment, PCR with the same primer set confirmed absence of contaminating DNA. Sample RNA concentrations were measured with a Qubit 2.0 Fluorometer (Life Technologies) using the RNA HS Assay kit (Life Technologies). All samples were run multiplexed on two lanes of the Illumina HiSeq3000 (paired-end, 150 bp reads, ~30M reads) at Vanderbilt’s VANTAGE sequencing core. Raw reads were trimmed and mapped to the N. vitripennis genome Nvt_2.1 (GCF_000002325.3) in CLC Genomics Workbench 8.5.1, allowing ten gene hits per read using a minimum length fraction of 0.9 and a minimum similarity fraction of 0.9. The number of reads generated for each sample and the percentage of reads that mapped to the N. vitripennis genomic and intergenic regions are provided in Table S2. Significant differential gene expression was determined in CLC Genomics Workbench 8.5.1 at α = 0.05 for unique gene reads using the Empirical analysis of DGE tool, which is based on the edgeR program commonly used for gene expression analyses [58].

RT-qPCR validation of RNA-seq results

One-day old adult, virgin females from N. vitripennis 12.1, N. giraulti IntG, and IntC3 were hosted with two S. bullata pupae and honey to encourage ovar development. After 48 hours, ovaries were removed in RNase-free PBS, flash-frozen in liquid nitrogen then stored at −80°C. 4-5 replicates of fifty ovaries per replicate were collected for each Nasonia strain. Total RNA was extracted from each sample using Trizol reagent (Invitrogen) with the Direct-zol RNA Miniprep kit (Zymo Research) then treated with the DNA-free DNA Removal kit (Ambion) for one hour at 37°C. After ensuring with PCR that all DNA had been removed, RNA was converted to cDNA using the SuperScript VILO cDNA Synthesis kit (Invitrogen).

RT-qPCR was performed on a CFX96 Real-Time system (Bio-Rad) using a total reaction volume of 25 μL: 12.5 μL of iTaq Universal SYBR Green Supermix (Bio-Rad), 8.5 μL of sterile water, 1 μL each of 5 μM forward and reverse primers (Table S6), and 2 μL of target cDNA in single wells of a 96-well plate (Bio-Rad). All RT-qPCR reactions were performed in technical duplicates and included a melt curve analysis to check for nonspecific amplification. The 60S ribosomal protein L32 (also known as RP49) was used as an expression control. All primers for RT-qPCR are provided in Table S6. Expression values for each candidate gene were calculated using the ΔΔCt method of relative quantification [59] with RP49 as the reference gene. Fold-change was determined by normalizing expression values to the mean expression value of N. giraulti IntG for each gene.

RNAi of candidate genes

to generate DNA template for dsRNA synthesis, primers with a T7 promoter sequence on the 5’ end of each primer were used to amplify a 450-700 bp region of the targeted genes (Table S6) by PCR using N. vitripennis whole-body cDNA as template. PCR amplicons were separated by electrophoresis on a 1% agarose gel, excised, and purified using the QIAquick Gel Extraction kit (QIAGEN). The dsRNA synthesis reaction was incubated for six hours at 37°C, treated with RNase and DNase for one hour at 37°C, then column-purified according to the manufacturer’s protocol. For injection, the dsRNA was used at a final concentration standardized to 750 ng/μL dsRNA. A Nanoject II (Drummond Scientific) was used to inject 23 nL of dsRNA (or MEGAScript kit elution buffer) into the ventral abdomen of virgin, female Nasonia at the red-eyed, yellow pupal stage. After emerging as adults, injected females were given honey and hosted individually on two S. bullata pupae for 48 hours. On the third day after emergence, they were transferred to new vials where they were presented with a single S. bullata pupae that was only exposed at the anterior end. After five hours, the pupae were opened and ten male embryos were collected in a 0.2 mL PCR tube for each female and stored at −80°C. The females were hosted on two pupae overnight, and then the same process was repeated again on the fourth day.
The number of Wolbachia bacteria per male embryo from injected females three and four days post emergence was determined using qPCR with Wolbachia groEL primers as described above. Wolbachia titers were not normalized to Nasonia gene copy number because early embryos have varying numbers of genome copies depending on how many rounds of mitotic division they have undergone [60]. To determine the knock-down efficiency of each dsRNA injection, RNA extraction and RT-qPCR of black pupae, five days post injection, were performed with 14-17 biological replicates from each treatment group as described above using the gene-specific RT-qPCR primers in Table S6.

Wds phylogeny and selection analyses

N. giraulti and N. longicornis nucleotide sequences of Wds were obtained from NCBI genomic scaffold sequences GL276173 and GL277955, respectively, and indels were manually extracted in Geneious Pro v11.0.3 (Biomatters) based on homology to N. vitripennis gene LOC1006079092. Protein alignment of Wds amino acid sequences for the three Nasonia spp. and its homolog in T. sarcophagae (TSAR_009911) was performed using the Geneious alignment tool. MEGA7.0.26 [54] was used to identify the JTT model as the best model of protein evolution for the alignment based on corrected Akaike information criterion (AICC). PhyML [61] and MrBayes [62] were executed in Geneious with default parameters to construct a maximum likelihood tree with bootstrapping and a Bayesian tree with a burn-in of 100,000, respectively.

To identify residues under positive selection in Wds, Ka/Ks values were calculated based on a pairwise alignment of the N. vitripennis and N. giraulti Wds coding sequences using a sliding window analysis (window = 30 AA, step size = 1 AA, Standard Code for genetic code input) in the SWAKK bioinformatics web server [45]. Analysis of Wds for protein structures and conserved domains was performed using the SMART online software at http://smart.embl-heidelberg.de [55]. Protein pIs were predicted using the online ExPASY Compute pI/Mw tool.

Imaging Wolbachia in Nasonia

For Wolbachia staining in ovaries, virgin, female Nasonia were hosted on Sarcophaga bullata pupae for two to three days before dissection to encourage ovary development. Females were dissected in 1X phosphate-buffered saline (PBS) solution, where ovaries were removed with forceps and individual ovarioles were separated with fine needles. Ovaries were fixed in 4% formaldehyde in PBS with 0.2% Triton X-100 (PBST) for 20 minutes at room temperature then transferred to a 1.5 mL Eppendorf tube containing PBST. Samples were washed quickly three times with PBST then incubated in PBST plus 1 mg/ml RNase A for three hours at room temperature then overnight at 4°C. After removing the RNase A solution, ovaries were incubated at room temperature for 15 minutes in PBST with 1:300 SYTOX green nucleic acid stain (Thermo Fisher Scientific) before washing twice with PBST, 15 minutes each time. Ovaries were then transferred to a glass slide and mounted in ProLong Gold antifade solution (Thermo Fisher Scientific) and covered with a glass coverslip sealed with nail polish. Ovary images in Figure 2 are representative of three independent experiments performed on different days with 2–3 females per species.

For Wolbachia staining in embryos, virgin, female Nasonia were hosted on a single S. bullata pupae for five hours. The host puparium was peeled away, and embryos were transferred with a probe to a glass vial containing 5 mL heptane. After shaking for two minutes, 5 mL methanol was added to the vial and shaken for another two minutes. Dechorionated embryos that sunk to the bottom of the vial were transferred to a 1.5 mL Eppendorf tube with methanol, then were serially rehydrated in increasing ratios of methanol to PBST for 1 min each (90% MeOH:10% PBST, 75% MeOH: 25% PBST, 50% MeOH: 50% PBST, 25% MeOH:75% PBST) before a final wash in 100% PBST for 5 mins. Embryos were then blocked in PBST + 0.2% BSA (PBST-BSA) for 30 mins then PBST-BSA + 5% normal goat serum (PBANG) for 1 hour followed by a 2-hour incubation in PBANG + 1 mg/ml RNase. Embryos were stained overnight at 4°C with monoclonal mouse anti-human Hsp60 antibody (Sigma; 1:250), which cross-reacts with Wolbachia but not insect proteins [63, 64]. After washing in PBST-BSA (4X, 15 mins each), embryos were incubated in goat anti-mouse Alexa Fluor 594 (Thermo Fisher Scientific; 1:500) for 2 hours, washed again in PBST-BSA (4X, 15 mins each), then mounted to coverslips with Prolong Diamond Antifade Mountant (Thermo Fisher Scientific). Embryo images in Figure 2 are representative of two independent experiments performed on different days.

All images were acquired on a Zeiss LSM 510 META inverted confocal microscope at the Vanderbilt University Medical Center Cell Imaging Shared Resource core and processed with Fiji software [56]. Quantification of Wolbachia in Nasonia oocytes and nurse cells of stage 3 egg chambers was performed by calculating corrected total cell fluorescence with ImageJ software 1.47v. Nasonia oocyte images taken at the same relative z stack slice were traced and the area integrated intensity was measured and compared to a background region (a traced region next to the egg chamber that has no fluorescence). Corrected total cell fluorescence was calculated as integrated intensity of the oocyte − (area of the oocyte * mean fluorescence of the background region). Quantification of Wolbachia in Nasonia nurse cells was also measured by counting the total number of fluorescent puncta, representative of Wolbachia and absent in Wolbachia-free Nasonia, in the Nasonia nurse cell cytoplasts. Images of Hsp60-stained embryos were false-colored green in Fiji.

QUANTIFICATION AND STATISTICAL ANALYSES

All statistical analyses, unless otherwise noted, were performed in GraphPad Prism 6.07 (GraphPad Software, La Jolla, CA). Outliers were removed from the results on embryonic Wolbachia titers and Wds RT-qPCR using the ROUT method, Q = 1%. Non-parametric tests were used on all data since most data did not pass Shapiro-Wilk test for normality or sample sizes were too small. Mann-Whitney U tests were used for comparisons between two groups, whereas a Kruskal-Wallis test was used to compare multiple groups. If
the Kruskal-Wallis test was significant ($p \leq 0.05$), a post hoc Dunn’s test of multiple comparisons was used to calculate significance for all pairwise combinations within the group. All averages are reported as mean ± SEM. For all quantifications of pupal Wolbachia densities, sample size “N” represents one pool of five pupae. For any data referring to adult Nasonia (genotyping, RNAi or RT-qPCR), sample size “N” denotes individual Nasonia. Statistical parameters for each experiment are reported in the results section and in any related figure legends.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is Bioproject: PRJNA430433.